US009471590B2

a2 United States Patent

Venkatesh et al.

US 9,471,590 B2
Oct. 18, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

METHOD AND APPARATUS FOR
REPLICATING VIRTUAL MACHINE
IMAGES USING DEDUPLICATION
METADATA

Applicant: Atlantis Computing, Inc., Mountain
View, CA (US)

Chetan C Venkatesh, San Mateo, CA
(US); Vinodh Dorairajan, San Jose,
CA (US); Kartikeya Iyer, Campbell,
CA (US); Vikram Auradkar, Los
Altos, CA (US); Seshan
Parameswaran, Sunnyvale, CA (US)

Inventors:

Atlantis Computing, Inc., Mountain
View, CA (US)

Assignee:

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Notice:

Appl. No.: 13/765,689

Filed: Feb. 12, 2013

Prior Publication Data

US 2014/0229440 A1 Aug. 14, 2014
Int. C.

GO6F 17/30 (2006.01)

GO6F 3/06 (2006.01)

GOGF 9/455 (2006.01)

U.S. CL.

CPC ... GO6F 17/30174 (2013.01); GO6F 3/061

(2013.01); GO6F 3/067 (2013.01); GOGF
3/0641 (2013.01); GO6F 9/45558 (2013.01);
GO6F 2009/45562 (2013.01)
Field of Classification Search
CPC GO6F 17/30156; GOGF 3/0641; GOG6F
17/30159; GO6F 17/30097;, GO6F 3/065;
GO6F 17/30581; GO6F 11/2094; GO6F
3/0626; GO6F 3/0683; GOO6F 11/1453;
GO6F 17/30575

USPC 707/637, 692, 693
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,603,380 A 7/1986 Easton et al.

6,675,214 B2 1/2004 Stewart et al.

6,807,619 B1 10/2004 Ezra et al.

6,915,302 Bl 7/2005 Christofferson et al.

7,269,608 B2 9/2007 Wong et al.

7,356,651 B2 4/2008 Liu et al.

7,571,288 B2 8/2009 Pudipeddi et al.

7,908,436 Bl 3/2011 Srinivasan et al.

8,046,446 B1 10/2011 Karr et al.

8,117,464 Bl 2/2012 Kogelnik

8,135,930 B1* 3/2012 MattoX GOGF 9/45558
711/100

8,312,471 B2 11/2012 Davis

8,442,955 B2* 5/2013 Al Kiswany GO6F 17/30233
707/610

8,495,288 B2 7/2013 Hosoya et al.

(Continued)

Primary Examiner — Tony Mahmoudi

Assistant Examiner — Merilyn Nguyen

(74) Attorney, Agent, or Firm — Blakely, Sokoloff, Taylor
& Zafman LLP

(57) ABSTRACT

Techniques for fast provisioning of virtual machine images
using deduplication metadata are described, including
receiving a request to copy a first virtual machine to form a
second virtual machine, identifying a first portion of
memory comprising data for the first virtual machine; and
forming the second virtual machine based on the first portion
of memory comprising data for the first virtual machine,
wherein forming the second virtual machine further com-
prises linking the second virtual machine to the first portion
of memory comprising data for the first virtual machine, and
implementing a second portion of memory to store data for
the second virtual machine independent of the first virtual
machine.

20 Claims, 8 Drawing Sheets

200

File 1

C

2

Before

Deduplication ¢ 3

B

7

T,
T o
T

9| Datablock

Occupied

Fle1>1,2,3
File2>4,5,6
File3>7,8,9

Block Numbers:

Block #
Reference Link|
Counter
Hash Value

_/

C.

A,

For "T"

Block#=3

Reference Link
Counter =2

T,

File 2

R,

2
5|

Linkto | L

©
(o~ 2100
5|

Deduplication
il

B.

2

Linkto | Li

to

ink
3
nk
3

8 9)

Qccupied Block Numbers:
File191,2,3
File2>4,2,3
File3>7,2,3

US 9,471,590 B2

Page 2
(56) References Cited 2010/0180153 A1 7/2010 Jernigan, IV et al.
2010/0181119 Al 7/2010 Saigh et al.
U.S. PATENT DOCUMENTS 2010/0188273 Al 7/2010 He et al.
2010/0274772 Al* 10/2010 Samuels GOGF 17/30233
8,566,821 B2 10/2013 Robinson et al.) 707/693
8,732,401 B2 5/2014 Venkatesh et al. 2010/0306444 Al 12/2010 Shirley et al.
8,983,952 B1* 3/2015 Zhang GO6F 7/00 2010/0332401 Al* 12/2010 Prahlad et al. 705/80
o 707/736 2011/0035620 Al 2/2011 Elyashev
9,037,547 B1* 5/2015 Shivdeo GOGF 17/30575 2011/0055471 Al 3/2011 Thatcher et al.
707/664 2011/0071989 Al 3/2011 Wilson et al.
9,305,007 B1* 4/2016 Efstathopoulos . GO6F 17/30156 2011/0082836 Al ~ 4/2011 Wang et al.
2002/0124137 Al 9/2002 Ulrich et al. 2011/0131390 Al* 6/2011 Srinivasan et al. 711/209
2003/0145045 Al 7/2003 Pellegrino et al. 2011/0145243 Al 6/2011 Yudenfriend
2003/0188045 Al 10/2003 Jacobson 2011/0167045 A1 7/2011 Okamoto
2004/0111443 Al 6/2004 Wong et al. 2011/0196900 Al 8/2011 Drobychev et al.
2004/0128470 Al 7/2004 Hetzler et al. 2011/0265083 Al 10/2011 Davis
2005/0038850 Al 2/2005 Oe et al. 2011/0276781 Al 11/2011 Sengupta et al.
2005/0108440 Al 5/2005 Baumberger et al. 2011/0295914 Al 12/2011 Mori
2005/0114595 Al 5/2005 Karr et al. 2012/0016845 Al 1/2012 Bates
2005/0131900 Al 6/2005 Palliyll et al. 2012/0054445 Al ~ 3/2012 Swart et al.
2006/0112251 Al 5/2006 Karr et al. 2012/0084262 Al* 4/2012 Dwarampudi GOGF 11/1448
2006/0272015 Al 11/2006 Frank et al.) 707/667
2007/0005935 Al 1/2007 Khosravi et al. 2012/0137054 Al 5/2012 Sadui et al.
2007/0192534 Al 8/2007 Hwang et al. 2012/0151477 Al 6/2012 Sinha et al.
2007/0248029 Al 10/2007 Merkey et al. 2012/0159115 Al 6/2012 Cha et al.
2007/0260702 Al 11/2007 Richardson et al. 2012/0254131 Al 10/2012 Kiswany
2007/0266037 Al 11/2007 Terry et al. 2013/0013865 Al 1/2013 Venkatesh et al.
2008/0183986 Al 7/2008 Yehia et al. 2013/0036091 Al* 2/2013 Provenzano GOGF 17/30162
2009/0063528 Al 3/2009 Yueh 707/624
2009/0063795 Al 3/2009 Yuech 2013/0117494 Al 5/2013 Hughes et al.
2009/0089337 Al 4/2009 Perlin et al. 2013/0124523 Al 5/2013 Rogers et al.
2000/0319772 Al 12/2009 Singh et al. 2013/0238876 Al 9/2013 Fiske et al.
2013/0282627 Al 10/2013 Faddoul et al.
2010/0031000 Al 2/2010 Flynn et al. :
e 2013/0283004 Al 10/2013 Devine et al.
2010/0064166 AL 3/2010 Dubnicki et al. 2014/0074804 Al* 3/2014 Colgrove GO6F 17/30159
2010/0070725 Al 3/2010 Prahlad et al. 2071692
2010/0138827 Al* 6/2010 Frankc...... GOGF 9/45558
718/1 * cited by examiner

US 9,471,590 B2

Sheet 1 of 8

Oct. 18, 2016

U.S. Patent

194

.

o1t

001

| S | S !
0sT ovt 0¢t 0ct
8rT 8eT 8¢t 81T 80T
(Wvy) Aoway {(Wvy) Aowsi (WvY) Alowa {Wvy) Aowaiy {(INvY) AMoway
WiIDlsAS wiolsAg Wi9lsAS wialsAS waisAs
SvT 9¢T Eran 51T 50T
suonesijddy suonedtjddy suonedddy suonedjjddy suonedjddy
JOMNIDS JETVETS FEVVETS 13AJBS 19NIDS
T VET vZT Pt 0T
138euein A la8euein WA 198eueiN NA Jaseuein INA 1a8euey INA
Z¥T 9pON TET 9pON TCT °PON TTT apon 70T @poN
09T J0AeT 21eM10S
waisAg — _
guandwo) S Lm%% E} o Mm_ﬁaw
d9J9jsuel] o1 (spr1omian 101€21dod

US 9,471,590 B2

Sheet 2 of 8

Oct. 18, 2016

U.S. Patent

V¢ 'Sld

£7L & el
1A RS A [P
€T7T& 19

SI9QWNN 320jg paidniag

d¢ 9ld
WA WA WA
pajediiday 224nos 303unos
TV 0318 011 o1 [01 * oo g
AUTPIUN PJUrbuin iU m Yur{yury
|1 01| 01 Y O1f] 03 |y O} 1 01|y 0} m
LU U PlUnipuy pyur N_ Nurpjur
101y 03|D O}
Hurpunpun |_. < U .._.. < U
474 1474
wmw B957
1
q9sc
3
4 4
A WA €2°L|€ald
paledijday 304Nn0S —
gCv|ead
€T T
0S¢

6 8 L
€ 4
O3 quIT | 01U
9 g 14
qotz gy ¢ < m
01U | o1yun
Z = 131Uno) m z T
Nur @auaJaey _ <
€ =#00j4
ulyy 104
3N|BA YseH 6’8t « €9l
Tounoy 9GSy & T i
HUIT 9IUBIBOY €7 1T
#300l9 1SIBQUINN YD0jg patdnIdQ
3o0jg e1ed 5 2 7
9 S 4
11 V[Y
€ 4 Y ' 1 U

00z

€ 9ll4

¢ 9

T 4

€9l

[4IE]

Toild4

vco:mu__n:nwo
Yy

vco_umu__asumn_
210499

U.S. Patent Oct. 18, 2016 Sheet 3 of 8 US 9,471,590 B2

300

307 /
=

Storage Controller /\
a1 317

Replicator
303

305

307

=

Source Node 302a Replica Node 302b

VM Manager
304a

i

Server Applications
306a

!

System Memory
(RAM)
308a

310a I

500

VM Manager
304b

i

Server Applications
306b

i

System Memory
(RAM)
308b

310b I

555

Geographic Geogr:aphic
Region Region
1 2

FIG. 3

U.S. Patent

Oct. 18, 2016

Sheet 4 of 8

Data Representing
Read/Write Request

414

A4

Replicator 402

Mapping Module
403

MetaMap

A

405a

» Data Repository

DataMap

A

405b

> Data Repository

Read/Write
Request Module
404

Data-Write
Module
408

Data-Read
Module
406

Replication
Acknowledgment
Module
410

A 4

Indication Data
Representing
Acknowledgment
412

FIG. 4

US 9,471,590 B2

;

400

US 9,471,590 B2

U.S. Patent Oct. 18, 2016 Sheet 5 of 8
532a 534a 542 ca4
a a
500
"-..’ 3 011 011 “A"
512 514 H
/ 7 111
522 524 RIS
; 1 | oo1
'. 001 ”C"
! 6 | 110
romeennas » 3 | on ; 110 | “p”
' 011 | “aA” ; 9 | 100 —
' 7 | 111 ; 100 | “E
: 111 IIBH :
! 1 | oo1 ;!
H 001 “cr !
: 6 | 110 ;
E 9 100 110 IIDII "
E 515 100 “E” 519 ,"
; Y3 [our 219 N X
: 516 010 “F“) :'
: U 9 100 ; Y]
E 517 \L ! 540a
Posg g3 o1t ; 530a
: U5 om0
; ———— ; Replica Node Tables Before
h M et] . .
H S H Replication
\ § 520 !
510 !
5 Source Node Tables ,-"
532b 534b
\ ! 542b 544b
s\ Source Node H
\ Data Block H
ugn ; 4 | on
'r .' 011 nAu
e » 011 ; 7 | 111
H 111 “B”
“2r ;' 1 001 001 -
metadata b '." 6 | 110 —
550b] 110 | "D
Blk # ! 535 9 | 100 e
/ U3 [ow 100 | F 546
Hash Replica Node ! 5361 o10 | “r S 4
of Links Data Block : 537 9 100
pres ! U 3 |ou
§ 3 / 538
550a 011 leeed U5 | ow
| ——
1 \ ; ¢
Replica Node { 540b
550c¢ Data Block 530b
3 Replica Node Tables After
011 Replication
g
S
550d

FIG.

U.S. Patent Oct. 18, 2016 Sheet 6 of 8
600
610
L‘ Start)
A\ 4
620 | Initialize MetaMap and
DataMap hash tables with
zeros
060 U Look up MetaMap hash
; ook up MetaMap has
630 Is 'F Read or table with key = LBN of the
Write to the > data block and retrieve hash
datastore READ
value
\ 4
640 670 “ULook up DataMap hash table
il Compute hash value of the .
data block with key = hash value and
@ return the actual data block
+ 680
650

Send hash value to replica
node along with local node-
id and LBN on disk

690

FIG. 6

US 9,471,590 B2

U.S. Patent Oct. 18, 2016 Sheet 7 of 8

690

730

710 oes replica

US 9,471,590 B2

700

/

A4

node have same
MD5 hash?

720

Data block is sent to replica

node along with MD5 Hash
Value, node 1D, and LBN,
and entries are made in
MetaMap and DataMap

Update the replica’s

MetaMap and inform

sender of successful
replication

r 3

750 y
End

FIG. 7

680
0

U.S. Patent Oct. 18, 2016 Sheet 8 of 8 US 9,471,590 B2

800
N Input/Output
Devices |- 801

1l

804 808

A A

Storage

Processor Device

A 4 A 4 1
h

i 802
4 Communication
Memory Interface

.8_@._6_ l » To
813 81 Network

Mapping Module
856

Read/Write

Request Module
858

Data-Write
Module
860

Data-Read
Module
862

Replication
Acknowledgment
Module
864

FIG. 8

US 9,471,590 B2

1

METHOD AND APPARATUS FOR
REPLICATING VIRTUAL MACHINE
IMAGES USING DEDUPLICATION
METADATA

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is related to U.S. Nonprovisional patent
application Ser. No. 13/765,687, filed Feb. 12, 2013, which
is herein incorporated by reference in its entirety and for all
purposes.

FIELD OF THE INVENTION

Embodiments of the invention relates generally to soft-
ware, data storage, and virtualized computing and process-
ing resources. More specifically, techniques for replicating
data and/or files constituting a virtual machine, or portion
thereof, using deduplication metadata are described.

BACKGROUND OF THE INVENTION

Conventional approaches to replicating virtual machine
images are typically a resource-intensive. Organizations
replicate virtual machine images for a variety of reasons, but
one notable reason is disaster recovery. Virtual machine-
based computing systems in one geographic region, such as
in New York City, that can be susceptible to data loss or
inability to access data due to, for example, a severe hurri-
cane or other types of disasters. In such occasions, transfer-
ring data from the affected region to another virtual
machine-based computing system in another geographic
region enables an organization to continue to keep its
internal processes (e.g., of a business) up and running.

However, transferring data to replicate virtual machine-
based computing system can involve transferring gigabytes
or terabytes of data via a variety of networks, including the
Internet. Creating a replica of a virtual machine requires
reading the source virtual machine image block by block and
transmitting copying each block to the replicated virtual
machine image. This is a relatively time-consuming opera-
tion since the data sizes of virtual machine images can take
many hours to complete.

Moreover, a rapidly-growing demand of virtualized sys-
tems and machines means hundreds of thousands of virtual
machines may need to be deployed at different locations.
Conventional solutions of replication hundreds or thousands
of virtual machines is cost prohibitive and time consuming
and do not scale effectively with the relatively large number
of virtual machines required for deployment, even if the
underlying file system of the virtual machines is dedupli-
cated.

For example, synchronous replication techniques require
the copying of data over a variety of networks to maintain
up-to-date copies of the data. Generally, synchronous rep-
lication requires data to be synchronously written to differ-
ent locations contemporaneously, whereby latency is intro-
duced due to replicating to a remote location. In particular,
the latency slows operation of the principal virtual machines
as data is written remote virtual machines and/or storage.

Thus, what is needed is a solution for improving the cost
and efficiency of replicating images of virtual machines
without the limitations of conventional techniques.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention are disclosed in the
following detailed description and the accompanying draw-
ings:

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 1 illustrates an example of a virtual machine-based
computing system implementing a replicator for generating
replicated virtual machines in accordance with at least one
embodiment;

FIG. 2A illustrates a graphical representation of an
example of deduplicating a virtual machine image to form
deduplicated virtual machine data, according to some
embodiments;

FIG. 2B illustrates a graphical representation of an
example of implementing a source virtual machine to form
a replicated virtual machine, according to some embodi-
ments;

FIG. 3 illustrates an example of a replicator to replicating
virtual machines (VMs) associated with data representing a
source virtual machine in accordance with at least one
embodiment;

FIG. 4 illustrates an example of a replicator application
module according to some embodiments;

FIG. 5 depicts data arrangements implemented by a VM
replication process, according to some embodiments;

FIG. 6 is a flow diagram of an example of a first portion
of a replication process using deduplicated data for virtual
machine images, according to some embodiments;

FIG. 7 is a flow diagram of an example of a second
portion of the replication process using deduplicated data for
virtual machine images, according to some embodiments;

FIG. 8 illustrates an example of a computing platform to
fast replicate a source virtual machine in accordance with
various embodiments.

DETAILED DESCRIPTION

Various embodiments or examples may be implemented
in numerous ways, including as a system, a process, an
apparatus, a user interface, or a series of program instruc-
tions on a computer readable medium such as a computer
readable storage medium or a computer network where the
program instructions are sent over optical, electronic, or
wireless communication links. In general, operations of
disclosed processes may be performed in an arbitrary order,
unless otherwise provided in the claims.

A detailed description of one or more examples is pro-
vided below along with accompanying figures. The detailed
description is provided in connection with such examples,
but is not limited to any particular example. The scope is
limited only by the claims and numerous alternatives, modi-
fications, and equivalents are encompassed. Numerous spe-
cific details are set forth in the following description in order
to provide a thorough understanding. These details are
provided for the purpose of example and the described
techniques may be practiced according to the claims without
some or all of these specific details. For clarity, technical
material that is known in the technical fields related to the
examples has not been described in detail to avoid unnec-
essarily obscuring the description.

In some examples, the described techniques may be
implemented as a computer program or application (“appli-
cation”) or as a plug-in, module, or sub-component of
another application. The described techniques may be
implemented as software, hardware, firmware, circuitry, or a
combination thereof. If implemented as software, the
described techniques may be implemented using various
types of programming, development, scripting, or format-
ting languages, frameworks, syntax, applications, protocols,
objects, or techniques, including ASP, ASP.net, .Net frame-
work, Ruby, Ruby on Rails, C, Objective C, C++, C#,
Adobe® Integrated Runtime™ (Adobe® AIR™), Action-

US 9,471,590 B2

3
Script™, Flex™, Lingo™, Java™, Javascript™, Ajax, Perl,
COBOL, Fortran, ADA, XML, MXML, HTML, DHTML,
XHTML, HTTP, XMPP, PHP, and others. The described
techniques may be varied and are not limited to the examples
or descriptions provided.

As described herein, techniques for efficient replication of
virtual machine images by transferring replication data and
deduplication metadata using techniques described herein.
The described techniques may be performed in real-time or
substantially real-time in which data representing source
virtual machines are used to form new virtual machines
using a fast-replicate application. The fast replicating tech-
niques described result in the formation of multiple new
virtual machines that are replicated instances of a source
virtual machine without, for example requiring the transfer-
ring 1 of the underlying data of the source virtual machine.
Further, the described techniques can significantly reduce
the amount of time required to create new virtual machines
by creating the new virtual machines without transferring,
for example, common data of the source virtual machine.
Still further, the described techniques may reduce the
amount of storage required for the new virtual machines as
the replicated virtual machines need not be created by
copying the files of the source virtual machine. In some
examples, the described virtual machine replicating tech-
niques may also improve scalability of virtualized networks
by significantly shortening the time required to establish
larger numbers of virtual machines at different locations,
such as different geographic regions. Additionally, the
described virtual machine replicating techniques can also be
used to create new virtual machines in system memory, such
as RAM, where data can be accessed quickly.

FIG. 1 illustrates an example of a virtual machine-based
computing system implementing a replicator for generating
replicated virtual machines in accordance with at least one
embodiment. System 100 can represent any number of
processors and/or computer-readable media devices (includ-
ing executable instructions) that constitutes a system of
virtual machines. To illustrate the structure and/or function-
ality of a replicator 101, virtual machines described in at
least one embodiment are formed in associations of nodes
102 to 142 of a computing cluster in which multiple physical
servers operate as, for example, a single computing system.
The servers can be viewed as a resource pool of processors,
RAM, and other computer components for providing nodes
102 to 142 to implement virtual machines. In some embodi-
ments, nodes 102 to 142 operate as a fault tolerant high-
availability (“HA”) cluster in which server processors and
applications are configured to reduce or eliminate downtime
by, for example, providing redundant computing resources
(e.g., redundant nodes) that activate upon detecting a node
failure. HA clusters provide uninterrupted access to data,
even if a server loses network or storage connectivity, or
fails completely, or if an application running on the server
fails.

In this example, system 100 includes a replicator 101, a
software layer 160, and any number of nodes 102 to 142
coupled to storage devices 110 to 150, respectively. Each
node can include a virtual machine (“VM”) manager, one or
more server applications, and system memory, such as
RAM. FIG. 1 depicts nodes 102 to 142 respectively includ-
ing VM managers 104 to 144, server applications 106 to
146, and system memories 108 to 148, respectively. Local
storage devices 110 to 150 are coupled to nodes 102 to 142,
respectively, and can include any memory or storage media,
such as solid state disks (SSDs), RAM drives (or RAM
disks), mechanical disk drives, etc. A software layer 160

5

10

15

20

25

30

35

40

45

50

55

60

65

4

includes executable instructions that operate as, for example,
a storage virtual appliance configured to cluster virtual
machine managers 104 to 144, which can include processors
operating hypervisor hosts. In some embodiments, software
layer 160 or portions thereof can be disposed in virtual
machine managers 104 to 144. In the cluster including nodes
102 to 142, local storage devices 110 to 150 are configured
to operate as shared storage. In some embodiments, local
storage devices 110 to 150 (or any memory for the cluster)
can implement a clustered file system, such as a block-based
clustered file system, whereby a file system is distributed
over a number of nodes 102 to 142 or physical servers.
Client computers view the clustered file system as a single
file system. Further to the example shown, nodes 102 to 142
are configured to transfer and store data at a block level.

Replicator 101 is configured facilitate efficient replication
of virtual machine data from one or more nodes 102-142 of
the cluster by transferring a subset of data constituting
virtual machine data via one or more networks 103 to a
transferee computing system (not shown), such as remote
storage media devices or as a remote cluster of nodes similar
to nodes 102-142. Replicator 101 can be configured to filter
out or otherwise block transfer of non-essential data blocks,
according to some embodiments. For example, non-essential
data blocks can include redundant blocks or duplicate blocks
that can reside on a replica node in the transferee computing
system. Further, replicator 101 is configured to facilitate
expeditious replication, especially due to a higher replica-
tion factor that is set to enhance a cluster’s fault tolerance.
A replication factor is a number of replica copies required in
other nodes (e.g., other nodes in the cluster), which is to be
transferred to the transferee computing system to maintain
replicated virtual machine data.

In some embodiments, VM managers 104 to 144 include
a deduplication application that can be configured to elimi-
nate duplicate copies of repeating data to effect a form of
data compression to maximize storage in one or more types
of storage media (e.g., storage devices 110 to 150, non-
volatile memory, and volatile memory). In a deduplication-
based file system, a deduplication application can identify
and eliminate duplicate copies of repeating data and imple-
ment a reference link to point to the original data, thereby
eliminating duplicate data, according to some embodiments.
For example, the deduplication application can store data
representing a link (e.g., the reference link) associating the
eliminated duplicate data and the original data in the form of
deduplication metadata, which functions to describe the
relationship between the original data and the deduplicated
data. Examples of techniques associated with deduplication
of virtual machine files are described in co-pending U.S.
patent application Ser. No. 13/269,525, filed Oct. 7, 2011,
entitled “Deduplication of Virtual Machine Files in a Virtu-
alized Desktop Environment,” which is incorporated herein
by reference in its entirety for all purposes.

In some embodiments, a deduplication application can
store the deduplication metadata in a metadata file or table
used to describe or map the relationships between the
deduplicated data and the original data. For example, a
metadata file or table can contain data representing a block
number that is associated with the physical location or data
block of the data in a storage device in a deduplicated file
system. Such a data block can contain data representing
information such as a block number, data associated with a
hash value generated by a hashing function (e.g., SHA-1 or
MDS) that uniquely identifies the data in the data block, and

US 9,471,590 B2

5

data associated with a reference link counter to track the
number of times a reference link associated with the data
block is implemented.

Replicator 101 can be implemented a distinct computing
device, as shown, or can be disposed or distributed in one or
more nodes 102 to 142. Replicator 101 can include struc-
tures and/or functions that can be implemented in software,
hardware, firmware, circuitry, or any combination thereof.
As depicted in FIG. 1 and subsequent figures, the structures
and/or functions of any of the above-described features can
be implemented in software, hardware, firmware, circuitry,
or any combination thereof. Note that the structures and
constituent elements above, as well as their functionality,
may be aggregated or combined with one or more other
structures or elements. Alternatively, the elements and their
functionality may be subdivided into constituent sub-ele-
ments, if any. As software, at least some of the above-
described techniques may be implemented using various
types of programming or formatting languages, frameworks,
syntax, applications, protocols, objects, or techniques. For
example, at least one of the elements depicted in FIG. 1 (or
any subsequent figure) can represent one or more algo-
rithms. Or, at least one of the eclements can represent a
portion of logic including a portion of hardware configured
to provide constituent structures and/or functionalities.

For example, replicator 101 and any of its one or more
components can include one or more processors configured
to execute one or more algorithms in memory. Thus, at least
some of the elements in FIG. 1 (or any subsequent figure)
can represent one or more algorithms. Or, at least one of the
elements can represent a portion of logic including a portion
of hardware configured to provide constituent structures
and/or functionalities. These can be varied and are not
limited to the examples or descriptions provided.

As hardware and/or firmware, the above-described struc-
tures and techniques can be implemented using various
types of programming or integrated circuit design lan-
guages, including hardware description languages, such as
any register transfer language (“RTL”) configured to design
field-programmable gate arrays (“FPGAs”), application-
specific integrated circuits (“ASICs”), multi-chip modules,
or any other type of integrated circuit. For example, repli-
cator 101 and any of its one or more components can be
implemented in one or more computing devices that include
one or more circuits. Thus, at least one of the elements in
FIG. 1 (or any subsequent figure) can represent one or more
components of hardware. Or, at least one of the elements can
represent a portion of logic including a portion of circuit
configured to provide constituent structures and/or function-
alities.

According to some embodiments, the term “circuit” can
refer, for example, to any system including a number of
components through which current flows to perform one or
more functions, the components including discrete and
complex components. Examples of discrete components
include transistors, resistors, capacitors, inductors, diodes,
and the like, and examples of complex components include
memory, processors, analog circuits, digital circuits, and the
like, including field-programmable gate arrays (“FPGAs”),
application-specific integrated circuits (“ASICs”). There-
fore, a circuit can include a system of electronic components
and logic components (e.g., logic configured to execute
instructions, such that a group of executable instructions of
an algorithm, for example, and, thus, is a component of a
circuit). According to some embodiments, the term “mod-
ule” can refer, for example, to an algorithm or a portion
thereof, and/or logic implemented in either hardware cir-

10

15

20

25

30

35

40

45

50

55

60

65

6

cuitry or software, or a combination thereof (i.e., a module
can be implemented as a circuit). In some embodiments,
algorithms and/or the memory in which the algorithms are
stored are “components” of a circuit. Thus, the term “circuit”
can also refer, for example, to a system of components,
including algorithms. These can be varied and are not
limited to the examples or descriptions provided.

FIG. 2A illustrates a graphical representation of an
example of deduplicating a virtual machine image to form
deduplicated virtual machine data, according to some
embodiments. Data block 2105 is a graphical representation
of an example of data block 210a after deduplication. In
some embodiments, a deduplication process can remove
redundant or duplicate copies of data chunks. For example,
deduplication removes duplicate copies of data chunk “A”
(in data blocks 5 and 8 in data block 210a) and implements
a reference link (e.g., an association with a block number or
an association with a location of a data block) associating the
redundant or duplicate copies of data chunk “A” to the
original data chunk “A” (in data block 2) and stores data
representing the linking information in a deduplication
metadata file, such as deduplication metadata file 2565
described below in FIG. 2B. In some embodiments, the data
blocks of a deduplicated file system may contain data
representing information such as the block number, data
associated with a hash value generated by a hashing function
that uniquely identifies the data chunk in the data block, and
data associated with a reference link counter to track the
number of times a reference link is implemented to associate
removed redundant data with the data block. For example,
block 3 of data block 2105 may contain data representing
information describing the block number as “3,” can include
data that represents a hash value for data chunk “T,” and data
associated with a reference link count of two because two
duplicate copies of data chunk “T” have been removed and
linked to this original data chunk “T.”

FIG. 2B illustrates a graphical representation of an
example of implementing a source virtual machine to form
a replicated virtual machine, according to some embodi-
ments. Diagram 250 depicts an example of replicating a
source virtual machine to form a virtual machine using the
deduplication metadata of the source virtual machine. In
some embodiments, deduplication metadata file 2565 can be
configured to include data representing a list of files and
reference links (e.g., associations with block numbers or
associations with locations of data blocks) to the data blocks
where the data of the files are stored. In some implementa-
tions, if a file system is deduplication-based, some files may
share data blocks with other files and result in multiple links
to the same data block. For example, deduplication metadata
file 2565 can include data representing a list of virtual
machine data files and their respective links (e.g., in the form
of block numbers) to data blocks that store the data of the
deduplicated virtual machine files. In some embodiments, if
a file system is deduplication-based, duplicate instances of a
file can be created without making a copy of the file itself.
For example, replicated instances of a file can be made by
duplicating the deduplication metadata and the reference
links of the file, and updating the number of times the data
block (or blocks) of the file has been linked (a link to each
data block of the file has been created for each new instance
of a file). In some embodiments, updating the number of
times the data block of a file has been linked could also be
referred to as updating a reference link counter associated
with the data block.

In some embodiments, duplicate instances of an entire
virtual machine image can be formed or created by dupli-

US 9,471,590 B2

7

cating the deduplication metadata files associated with the
virtual machine and without copying any data portions of the
virtual machine itself. For example, to create a replicated
virtual machine (or a replicated instance of a source virtual
machine), deduplication metadata table 256a, which
includes links to the data blocks where the source virtual
machine data is stored, is duplicated to form deduplication
metadata table 258, which includes new links to the data
blocks where the source virtual machine data is stored (254).
After an instance of the source virtual machine is formed, a
reference link counter for each of the data blocks of the data
of'the source virtual machine is incremented a replicator 101
of FIG. 1 each time a new reference link to the data block
is implemented to track the number of times removed
redundant data is associated with the data block. In some
implementations, the above-described technique for creating
replicated instances of virtual machines from a source
virtual machine may be referred to as fast replicating.

FIG. 3 illustrates an example of a replicator to replicating
virtual machines (VMs) associated with data representing a
source virtual machine in accordance with at least one
embodiment. As shown in diagram 300, a replicator 303 is
disposed in a storage controller 301 and is configured to
generate replication data that is configured to transfer rep-
licated data to reduce, minimize, and/or eliminate latencies
otherwise caused by replicating data, for example, in accor-
dance with synchronous replication techniques. In the
example shown, replicator is configured to generate a replica
node 3025 based on deduplicated data associated with
source node 302a. As shown, replica node 3025 includes a
VM manager 3045, one or more server applications 3065,
and system memory 3085 disposed at a first location, and
source node 3025 includes a VM manager 3044, one or more
server applications 306a, and system memory 308a disposed
at a second location. Replicator 303 is configured to deter-
mine common data among source node 302a and replica
node 3025, and generates replication data 307 for transfer
from source node 302a to replica node 3025. Replication
data 307, for example, includes data for updating replica
node 3025 to match data associated with source node 302.
Thus, replicator 303 filters out or avoids transfer of common
data 305 that shared among source node 302a and replica
node 3025. Acknowledgment data 317 is sent back to source
node 302a to affirm that replica node 3025 is updated as a
replication of source node 302a. As less than all of the data
associated with source node 3024 is used, acknowledgement
data 317 is received after replication data 307 is sent in
reduced duration than otherwise might be the case. Replica
node 3025 can be a mirrored backup of source node 302a,
according to some examples.

FIG. 4 illustrates an example of a replicator application
module according to some embodiments. A replicator mod-
ule 402 is configured to receive data representing a read/
write request 414, and includes a mapping module 403, a
metamap data repository 405a, a datamap data repository
405p, a read/write request module 404, a data-read module
406, a data-write module 408, and a replication acknowl-
edgment module 410 configured to generate data represent-
ing an indication 412 acknowledging successful replication
at a replica node. Mapping module 403 is configured to
generate metamap data for storing in metamap data reposi-
tory 405a, and is further configured to generate datamap data
for storing in datamap data repository 4056. According to
some embodiments, metamap data is metadata that is
arranged in a hash table consisting of keys mapped to values,
a key includes data representing a node ID and a logical
block number (“LLBN”) of a data block. A node ID a unique

10

15

20

25

30

35

40

45

50

55

60

65

8

identifier of a specific node in a cluster. Further, the values
to which the keys are mapped include unique value to
identify a data block and/or data therein. For example, the
values can be a hash value. According to some embodi-
ments, datamap data is metadata that is arranged in a hash
table consisting of other keys mapped to other values. One
of the other keys includes data representing a unique value,
such as a hash value, to identify a data block and/or data
therein. Further, the other values to which the other keys are
mapped include the data block and/or data therein. Initially,
mapping module 403 is configured to initialize metamap and
datamap data to zeros (e.g., when the file system is formatted
and freshly installed).

Read/write request module 404 is configured to detect a
request to access data in a local storage device (e.g., a
hypervisor datastore), whereby data blocks are written to, or
read from, the local storage device. Thus, read/write request
module 404 can be configured to identify data representing
a first file on a first storage device during a write operation.
The data can include metadata for deduplicated data. Data-
read module 406 is configured to detect read operations and
associated data from the local storage device. The data block
can be retrieved by looking up a local node’s MetaMap data
in metamap data repository 405a with a key set to a logical
block number (“LLBN”) of the data block to obtain a corre-
sponding hash value. With the hash value as a key, a look-up
operation can be performed in the DataMap data in datamap
data repository 4055 to retrieve the actual data.

Data-write module 408 is configured to determine
whether the data representing a first file matches a set of data
on a second storage device. For example, data-write module
408 is configured to compute hash value of a data block to
be written to the local storage device. Further, data-write
module 408 is configured to transmit hash to the replica node
along with a local node ID and a logical block number
(“LLBN™) of data on disk.

Replication acknowledgment module 410 can be config-
ured to check on the replica node to determine if the same
hash block exists on remote storage device, which is local to
the replica node. Replication acknowledgment module 410
can be configured to form a second file on the second storage
device by, for example, linking the second file to the set of
data on the second storage device if the data representing the
first file matches the set of data on the second storage device,
and copying the data representing the first file to form the
second file if the data representing the first file does not
match the set of data on the second storage device. If the
replica node includes the data, then an entry is made in the
replica node’s MetaMap and replicator 402 is informed of
successful replication. As such, there is no need to send the
actual data block across “the wire,” or over the networks.
The source node’s MetaMap also gets updated pointing to
remote node for that data block. But if the replica node does
not include the data, then the data block is sent to the replica
node, along with its hash value, logical block number
(“LBN™), node ID, and entries are made in the repositories
for MetaMap and DataMap data in replicator 402.

FIG. 5 depicts data arrangements implemented by a VM
replication process, according to some embodiments. Dia-
gram 500 depicts examples of source node tables 510 and
520 and replica node tables 530a, 5305, 540a, and 5405,
according to some embodiments. Metadata 550a includes
data representing a logical block number (“blk #”), a hash
value (“hash”), and a number of links (“# of links™) indi-
cating the number of instances the copies of the data link
back to the source data. The source node tables include a
metamap table 510 and a datamap table 520. Metamap table

US 9,471,590 B2

9

510 includes block numbers 512 and corresponding hash
values 514, whereas datamap table 520 includes hash values
522 and data 524 for blocks of data.

To illustrate operation of a replicator of various embodi-
ments, consider that data is written into a local storage
device in a first time interval. That is, data is written as data
515,516, 517, and 518 into metamap table 510, and data 519
is written into datamap table 520 (e.g., F represents a block
of data). At this time, metadata 55056 for data block “A” in
524, which is associated with key 522, indicates that there
are “three” instances of “A” in the source node (e.g., an
original data block with “A” and two links to that original
data block).

A request to initiate a replication operation occurs in a
second time interval in which the replica node includes
data—prior to replication—in replica node tables 530a and
540aq. In particular, metamap table 5304 includes initial data
for block numbers 532a and corresponding hash values 534a
prior to replication. Datamap table 540a includes initial data
hash values 542a and data 544a for blocks of data prior to
replication. At this time, the metadata 550¢ for data block
“A” in 544a, which is associated with key 542a, indicates
that there is “one” instance of “A” in the replica node (i.e.,
the data of the original data block with “A”).

Next, in a third time interval, data associated with data
block “F” is written to the replica node. That is, data block
“F” is written into datamap table 5405 as data 5445, which
is associated with hash value 5425, after replication. Further,
during replication, data 535, 536, 537, and 538 is written
into metamap table 5305. Thereafter, metadata for data
block “A” has a value of “three” links, as depicted in
metadata 5504.

FIG. 6 is a flow diagram of an example of a first portion
of a replication process using deduplicated data for virtual
machine images, according to some embodiments. At 610,
replication starts in flow diagram 600. At 620, the metamap
and datamap tables are initialized with zeros. At 630, a
determination is made whether an access to a local data store
is a read or a write. If the access operation is a read
operation, flow 600 moves to 660 at which a look-up
operation is performed on a metamap hash table using data
representing a key of a logical block number of the data
block, whereby a hash value (e.g., an MD5 hash value) is
retrieved. At 670, a look-up operation is performed on a
datamap hash table with a key (e.g., a hash value, such as a
MDS value) to return with an actual data block. From there,
flow 600 moves to 680, which continues in FIG. 7. But if the
access operation is a write operation, flow 600 moves to 640
to compute a hash value (e.g., a MDS5 hash value) of the data
block. The hash value is sent to the replica node at 650 along
with local node ID data and LBN data on disk. Thereafter,
flow 600 moves to 690, which continues in FIG. 7

FIG. 7 is a flow diagram of an example of a second
portion of the replication process using deduplicated data for
virtual machine images, according to some embodiments. If
there was a write operation, flow 700 continues at 680 from
FIG. 6. At 710, a determination is made whether the replica
node has the same MDS5 hash value. If equivalent data exists
at the replica node, flow 700 updates the replica’s MetaMap
and transmits to source node (e.g., the sender) an acknowl-
edgement of successful replication at 730. Otherwise, if
equivalent data does not exist, flow 700 moves to 720 at
which a data block is sent to replica node along with a
corresponding MDS5 hash Value, node ID, and LBN. Then,
entries are made in the metamap and datamap tables. Flow
700 terminates at 750.

10

15

20

25

30

35

40

45

50

55

60

65

10

FIG. 8 illustrates an example of a computing platform to
fast replicate a source virtual machine in accordance with
various embodiments. In some examples, computing plat-
form 800 may be used to implement computer programs,
applications, methods, processes, algorithms, or other soft-
ware to perform the above-described techniques. Computing
platform 800 includes a bus 802 or other communication
mechanism for communicating information, which intercon-
nects subsystems and devices, such as processor 804, system
memory 806 (e.g., RAM, etc.), storage device 808 (e.g.,
ROM, etc.), a communication interface 813 (e.g., an Ether-
net or wireless controller, a Bluetooth controller, etc.) to
facilitate communications via a port on communication link
821 to communicate, for example, with a computing device,
including mobile computing and/or communication devices
with processors. Processor 804 can be implemented with
one or more central processing units (“CPUs”), such as those
manufactured by Intel® Corporation, or one or more virtual
processors, as well as any combination of CPUs and virtual
processors. Computing platform 800 exchanges data repre-
senting inputs and outputs via input-and-output devices 801,
including, but not limited to, keyboards, mice, audio inputs
(e.g., speech-to-text devices), user interfaces, displays,
monitors, cursors, touch-sensitive displays, LCD or LED
displays, and other I/O-related devices.

According to some examples, computing platform 800
performs specific operations by processor 804 executing one
or more sequences of one or more instructions stored in
system memory 806, and computing platform 800 can be
implemented in a client-server arrangement, peer-to-peer
arrangement, or as any mobile computing device, including
smart phones and the like. Such instructions or data may be
read into system memory 806 from another computer read-
able medium, such as storage device 808. In some examples,
hard-wired circuitry may be used in place of or in combi-
nation with software instructions for implementation.
Instructions may be embedded in software or firmware. The
term “computer readable medium” refers to any tangible
medium that participates in providing instructions to pro-
cessor 804 for execution. Such a medium may take many
forms, including but not limited to, non-volatile media and
volatile media. Non-volatile media includes, for example,
optical or magnetic disks and the like. Volatile media
includes dynamic memory, such as system memory 806.

Common forms of computer readable media includes, for
example, floppy disk, flexible disk, hard disk, magnetic tape,
any other magnetic medium, CD-ROM, any other optical
medium, punch cards, paper tape, any other physical
medium with patterns of holes, RAM, PROM, EPROM,
FLASH-EPROM, any other memory chip or cartridge, or
any other medium from which a computer can read. Instruc-
tions may further be transmitted or received using a trans-
mission medium. The term “transmission medium” may
include any tangible or intangible medium that is capable of
storing, encoding or carrying instructions for execution by
the machine, and includes digital or analog communications
signals or other intangible medium to facilitate communi-
cation of such instructions. Transmission media includes
coaxial cables, copper wire, and fiber optics, including wires
that comprise bus 802 for transmitting a computer data
signal.

In some examples, execution of the sequences of instruc-
tions may be performed by computing platform 800.
According to some examples, computing platform 800 can
be coupled by communication link 821 (e.g., a wired net-
work, such as LAN, PSTN; or any wireless network) to any
other processor to perform the sequence of instructions in

US 9,471,590 B2

11

coordination with (or asynchronous to) one another. Com-
puting platform 800 may transmit and receive messages,
data, and instructions, including program code (e.g., appli-
cation code) through communication link 821 and commu-
nication interface 813. Received program code may be
executed by processor 804 as it is received, and/or stored in
memory 806 or other non-volatile storage for later execu-
tion.

In the example shown, system memory 806 can include
various modules that include executable instructions to
implement functionalities described herein. In the example
shown, system memory 806 includes a mapping module
856, a read/write replicate request module 858, a data-write
module 860, a data-read module 862, and a replication
acknowledgment module 862, any of which can be config-
ured to provide one or more functions described herein.

According to some embodiments, the term “circuit” can
refer, for example, to any system including a number of
components through which current flows to perform one or
more functions, the components including discrete and
complex components. Examples of discrete components
include transistors, resistors, capacitors, inductors, diodes,
and the like, and examples of complex components include
memory, processors, analog circuits, digital circuits, and the
like, including field-programmable gate arrays (“FPGAs”),
application-specific integrated circuits (“ASICs”). There-
fore, a circuit can include a system of electronic components
and logic components (e.g., logic configured to execute
instructions, such that a group of executable instructions of
an algorithm, for example, and, thus, is a component of a
circuit). According to some embodiments, the term “mod-
ule” can refer, for example, to an algorithm or a portion
thereof, and/or logic implemented in either hardware cir-
cuitry or software, or a combination thereof (i.e., a module
can be implemented as a circuit). In some embodiments,
algorithms and/or the memory in which the algorithms are
stored are “components” of a circuit. Thus, the term “circuit”
can also refer, for example, to a system of components,
including algorithms. These can be varied and are not
limited to the examples or descriptions provided.

Although the foregoing examples have been described in
some detail for purposes of clarity of understanding, the
above-described inventive techniques are not limited to the
details provided. There are many alternative ways of imple-
menting the above-described invention techniques. The dis-
closed examples are illustrative and not restrictive.

What is claimed:

1. A method, comprising:

identifying data representing a first instance of a virtual

machine image on a first storage device to be replicated
to a second storage device;

copying a deduplication metadata file that describes the

first instance of the virtual machine image from the first
storage device to the second storage device, wherein
the deduplication metadata file comprises a list of one
or more virtual machine image data files for the first
instance of the virtual machine image and associated
reference links to data blocks of the one or more virtual
machine image data files;

determining, based on metadata describing the data

blocks of the one or more virtual machine image data
files in the deduplication metadata file, which data
representing the first instance of the virtual machine
image matches data from a set of data on the second
storage device;

forming a second instance of the virtual machine image

on the second storage device based on the metadata

10

15

20

25

30

35

40

45

50

55

60

65

12

description in the deduplication metadata file to repli-

cate the first instance of the virtual machine image at

the second storage device, wherein forming the second

instance of the virtual machine image on the second

storage device further comprises:

linking the second instance of the virtual machine
image to at least a portion of the set of data on the
second storage device for data representing the first
instance of the virtual machine image that matches
data from the set of data on the second storage device
to form the second instance of the virtual machine
image without transferring underlying blocks of data
for the one or more virtual machine image data files
from the first storage device to the second storage
device.

2. The method of claim 1, wherein identifying data
representing the first instance of the virtual machine image
on the first storage device further comprises:

determining a block number associated with the first

instance of the virtual machine image on the first
storage device;

determining a hash value associated with the first instance

of the virtual machine image based on the block
number; and

determining the data representing the first instance of the

virtual machine image on the first storage device based
on the hash value.

3. The method of claim 1, wherein linking the second
instance of the virtual machine image to the set of data on
the second storage device further comprises:

updating a metadata file on the second storage device to

include metadata associated with the second instance of
the virtual machine image.

4. The method of claim 3, wherein metadata in the
metadata file is associated with deduplicated data.

5. The method of claim 3, wherein the metadata file on the
second storage device comprises a link counter associated
with the set of data on the second storage device.

6. The method of claim 5, wherein the link counter
associated with the set of data on the second storage device
indicates a number of times the set of data on the second
storage device is linked.

7. The method of claim 1, wherein determining whether
the data representing the first instance of the virtual machine
image matches a set of data on a second storage device
further comprises:

determining a block number associated with the first

instance of the virtual machine image on the first
storage device;

determining a first hash value associated with the first

instance of the virtual machine image based on the
block number;

determining a second hash value associated with the set of

data on the second storage device; and

determining whether the first hash value matches the

second hash value.

8. The method of claim 1, wherein the first storage device
is coupled to a first node of a computer cluster.

9. The method of claim 8, wherein the second storage
device is coupled to a second node of the computer cluster,
wherein the computer cluster comprises a virtual storage
appliance that aggregates storage of data using the first node
and the second node, and the second node is a mirrored
backup of the first node, and wherein the second instance of
the virtual machine image is formed on the second node
based on the deduplication data within the aggregated stor-

US 9,471,590 B2

13

age without copying the one or more virtual machine image
data files listed in the deduplication metadata file.

10. The method of claim 9, wherein the first node and
second node are coupled via a cloud network.

11. A system, comprising:

a first storage device configured to store data representing

a first instance of a virtual machine image;

a processor configured to

copy a deduplication metadata file that describes the
first instance of the virtual machine image from the
first storage device to a second storage device,
wherein the deduplication metadata file comprises a
list of one or more virtual machine image data files
for the first instance of the virtual machine image and
associated reference links to data blocks of the one or
more virtual machine image data files,

determine, based on metadata describing the data
blocks of the one or more virtual machine image data
files in the deduplication metadata file, which data
representing the first instance of the virtual machine
image matches data from a set of data on the second
storage device, and

form a second instance of a virtual machine image on
the second storage device based on the metadata
description in the deduplication metadata file to
replicate the first instance of a virtual machine image
at the second storage device, the processor being
further configured,

link the second instance of a virtual machine image to
at least a portion of the set of data on the second
storage device for data representing the first instance
of a virtual machine image that matches data from
the set of data on the second storage device,

to form the second instance of a virtual machine image
without transferring underlying blocks of data for the
one or more virtual machine image data files from
the first storage device to the second storage device.

12. The system of claim 11, wherein the processor is
further configured to determine a block number associated
with the first instance of a virtual machine image on the first
storage device, to determine a hash value associated with the
first instance of a virtual machine image based on the block
number, and to determine the data representing the first
instance of a virtual machine image on the first storage
device based on the hash value.

13. The system of claim 11, wherein the processor is
further configured to update a metadata file on the second
storage device to include metadata associated with the
second instance of a virtual machine image.

14. The system of claim 13, wherein metadata in the
metadata file is associated with deduplicated data.

15. The system of claim 13, wherein the metadata file on
the second storage device comprises a link counter associ-
ated with the set of data on the second storage device.

16. The system of claim 15, wherein the link counter
associated with the set of data on the second storage device
indicates a number of times the set of data on the second
storage device is linked.

17. The system of claim 11, wherein the processor is
further configured to determine a block number associated
with the first instance of a virtual machine image on the first
storage device, to determine a first hash value associated

10

15

20

25

30

35

40

45

50

55

60

14

with the first instance of a virtual machine image based on
the block number, to determine a second hash value asso-
ciated with the set of data on the second storage device, and
to determine whether the first hash value matches the second
hash value.

18. The system of claim 11, wherein the first storage
device is coupled to a first node of a computer cluster.

19. The system of claim 18, wherein the second storage
device is coupled to a second node of the computer cluster,
wherein the computer cluster comprises a virtual storage
appliance that aggregates storage of data using the first node
and the second node, and the second node is a mirrored
backup of the first node, and wherein the second instance of
the virtual machine is formed on the second node based on
the deduplication data within the aggregated storage without
copying the one or more virtual machine data files listed in
the deduplication metadata file.

20. A method, comprising:

identifying data representing a first instance of a virtual

machine image on a first storage device to be replicated
to a second storage device;

copying a deduplication metadata file that describes the

first instance of the virtual machine image from the first
node to the second node, wherein the deduplication
metadata file comprises a list of one or more virtual
machine image data files for the first instance of the
virtual machine image and associated reference links to
data blocks of the one or more virtual machine image
data files;

determining which data representing the first instance of

the virtual machine image matches data from a set of

data on the second storage device, wherein determining

which data representing the first instance of a virtual

machine image matches data from the set of data on the

second storage device further comprises:

determining a block number associated with the first
instance of the virtual machine image on the first
storage device;

determining a hash value associated with the first
instance of the virtual machine image based on the
block number;

determining the data representing the first instance of
the virtual machine image on the first storage device
matches data from the set of data on the second
storage device based on the hash value;

forming a second instance of the virtual machine image

on the second storage device to replicate the first
instance of the virtual machine image at the second
storage device, wherein forming the second instance of
the virtual machine image on the second storage device
further comprises:
linking the second instance of the virtual machine
image to at least a portion of the set of data on the
second storage device for data representing the first
instance of the virtual machine image that matches
data from the set of data on the second storage device
to form the second instance of the virtual machine
image without transferring underlying blocks of data
for the one or more virtual machine data files from
the first storage device to the second storage device.

#* #* #* #* #*

